4
May
2024

Success in Film and Pharma: Contingent But Not Random

David Shaywitz

Film and pharma, like many creative endeavors, exist in a world of power law economics, where a handful of exceptionally successful products account for a massively disproportionate share of the total revenue. 

Consequently, in both domains, there’s a powerful incentive to “pick winners.” Every studio head and every R&D leader tries desperately to do this. 

But there’s a problem: as screenwriting legend William Goldman (The Princess Bride, All The President’s Men, Butch Cassidy and the Sundance Kid) famously observed.

“Nobody knows anything.”   

The full quote, from Goldman’s classic 1983 memoir, Adventures in the Screen Trade, continues, “Not one person in the entire motion picture field knows for a certainty what’s going to work. Every time out it’s a guess and, if you’re lucky, an educated one.”

Similarly, distinguished physician-scientist and former head of R&D at Merck, Dr. Roger Perlmutter, bluntly acknowledges, “we have no idea what we’re doing,” adding, “It’s a bloody miracle if you ever make a drug that works.”

Roger Perlmutter

Revenue predictions in pharma ahead of launch are also notoriously difficult to predict, as studies by both BCG and McKinsey have affirmed. Earlier stage (pre-Phase 2) forecasts – the sort of thing former NIBR head Mark Fishman wisely banned, but current management has reinstated – seem especially fraught (see here).

Yet beneath this truth lie two conflicting realities.

  1. As appealing as the narrative of drug development moving gracefully between biology and clinic is, with “line of sight” thinking and guided by a target product profile, the actual process tends to be far messier, particularly in the case of novel mechanisms;
  2. Even though a huge number of lucky breaks are required to achieve a blockbuster, this does not mean that such success is simply random, equally available to anyone who buys a lottery ticket.  Talent, taste, and teamwork are vital as well, not to mention judgement and determination. 

The real lesson is that in power law domains like film and pharma, success is incredibly difficult to achieve.  You need both a huge amount of good fortune and a team that actively seeks opportunities to benefit from serendipity.

A good team has the mindset, competence, and agility to leverage effectively whatever luck comes their way. 

Path To A Blockbuster Drug: Messier Than You’d Think

In a fascinating recent interview, R&D productivity scholar Jack Scannell (of Eroom’s Law fame) discusses what might be called the noble lie of drug development: the conceit that we have the ability to understand adequately and domesticate reliably biology. Nassim Taleb and I wrote about this in the Financial Times in 2008.

Scannell explained that to advance a candidate medicine in a drug development organization, you need a very clear and crisp story of why you think it’s going to work, in order to compete successfully for resources.  He also notes that every time a drug is successfully developed, there’s always a just-so story explaining why the process worked.

Jack Scannell

The problem, Scannell accurately points out, is that these narratives evolve over time – an approach that in retrospect seems logical and methodical (and hence, presumably, repeatable) yet was almost certainly far less structured and streamlined in practice. 

If there’s a canonical path for drug development, many first-in-class medicines never got the memo.  Scannell cites the example of anti-TNF drugs, which were initially developed for sepsis; they didn’t work.  Only later were anti-TNF candidates tried in inflammatory conditions like rheumatoid arthritis; products in this category today include Humira (cumulative global sales of around $200B) and Enbrel (cumulative sales of around $74M as of 2021, estimated to hit $100B by 2029). 

Similar examples abound.  Botox (as I’ve discussed, see here, here) was originally developed and FDA-approved as a medicine for strabismus; sildenafil (Viagra), famously, entered clinical trials as a potential treatment for angina.

Pembrolizumab (Keytruda), Merck’s blockbuster oncology drug, as I discussed in depth here, was initially developed by researchers at Organon Pharmaceuticals in Oss, the Netherlands, as part of a hunt for an inhibitor of the immune system to help patients with autoimmune disease. 

When a stimulator (technically, an inhibitor of an inhibitor) was discovered instead, researchers contemplated a range of uses including as an anti-viral medicine and as a vaccine enhancer, before setting on developing it as a potential cancer medicine.  Even so, it was effectively invisible to the R&D leadership of multiple companies for years, including Merck which was on the edge of out-licensing it, only pulling it back in at the last moment. 

Or consider my former employer, Takeda, which acquired Millennium Pharmaceuticals in 2008 for $8.8 billion in order “to bolster its cancer drug business,” according to Reuters. At the heart of this transaction was bortezomib (Velcade), a cancer drug Millennium acquired when it bought Leukosite in 1999 for its pipeline, most notably a share the drug Campath (later sold to ILEX which was then acquired by Genzyme).  At the time of the acquisition, Millennium “had no interest in bortezomib,” and was effectively unaware of its existence. 

Leukosite, for its part, had acquired bortezomib from a company called ProScript after it ran out of money; ProScript, meanwhile, began life as Myogenics, a company co-founded in 1993 by Harvard scientists Alfred Goldberg, Tom Maniatis, Kenneth Rock, and Michael Rosenblatt.  The company was focused on targeting the proteosome, which is involved in protein degradation.  The original goal was to help treat disorders of muscle wasting, hence the name.  But in 1994, after a compelling conversation with Israeli researcher and future Nobel laureate Avram Hershko, the startup’s head of research, Julian Adams, decided to pivot to cancer (and change the company’s name to ProScript). 

As Goldberg later reflected, “Most scientists do not realize how the progress of drug development depends so much on nonscientific issues and random events — and luck.” 

The broader point is that while both Velcade and Keytruda are important oncology medicines ultimately developed successfully by Millennium and Merck, respectively, the origin and early evolution of each was incredibly messy, and effectively the antithesis of the carefully scripted process we might have been tempted (or seduced) to imagine. 

Similarly, anti-TNF medicines weren’t initially developed to treat rheumatoid arthritis, Botox wasn’t developed to treat wrinkles, sildenafil wasn’t developed for erectile dysfunction. Moreover, as Morton Meyers documents in Happy Accidents (see my discussion here), many categories of medicines used in psychiatry were originally discovered through astute clinical observation rather than deliberate drug design focused on the particular indication.

Path To A Blockbuster Film Franchise: Messier Than You’d Think

The Marvel Cinematic Universe (MCU), featuring Spiderman, X-Men, Iron Man, The Hulk, Thor, Captain America, Black Widow, and many others is the single most successful franchise in movie history, netting nearly $30B in global box office so far, and much more in associated licensing.  These are impressive numbers even by pharma standards.

Much like the eventual success of Keytruda and Velcade, the triumph of the MCU was hardly inevitable, as a fascinating new book, MCU, and an engaging Wall Street Journal podcast series, “With Great Power,” both reveal.

Marvel Comics, founded in 1939 as Timely Comics, enjoyed its heyday in the 1960s, as writer Stan Lee led the development of such memorable characters as the Fantastic Four, X-Men, Spiderman, Ant Man, and Iron Man, among others.  After a series of financial transactions starting in 1968, Marvel wound up in the hands of corporate raider Ronald Perelman in 1989.  Perelman, in turn used the company as a vehicle to acquire other companies including a sports card company and a sticker company, loading up Marvel with extensive debt. 

In 1990, Marvel sold licensing rights to ToyBiz, a company owned by entrepreneur Ike Perlmutter, an emigree from Israel who had made his fortune in the U.S. as a liquidator, buying products from failing businesses and selling them to consumers at a small markup.  The profits from this enabled him to acquire and turn around distressed companies instead of products; for example, he acquired and later flipped Caleco to Hasbro, pocketing $40 million in the process. 

In 1990, Perlmutter acquired the struggling toy maker ToyBiz, and hired inventive toy creator Avi Arad (another Israeli emigree) to help the company come up with new products.  Having watched the sales of Batman toys go through the roof with the release of Tim Burton’s Batman in 1989 (ToyBiz had a non-exclusive license to DC characters), Perlmutter pursued and acquired the exclusive rights to Marvel characters from Perelman.  The sales of these were sufficiently encouraging to encourage Ike to strike a new deal with Perlman in 1993: Marvel would get 43% of ToyBiz and in exchange, ToyBiz would gain exclusive licensing rights for all Marvel characters into perpetuity.

To support Marvel’s struggling balance sheet in 1993-1994 – and to stimulate the sale of toys – Marvel, in a deal led by Arad, sold the movie rights to X-Men and the Fantastic Four to 20th Century Fox. But Marvel couldn’t stave off the inevitable, and in 1996, the company declared bankruptcy, with the intention of restructuring their debts.   

Unexpectedly, a fight ensued between Perelman and another well-known corporate raider, Carl Icahn.  In 1997, ToyBiz abruptly parachuted into the middle of this dispute with an unsolicited offer of their own to acquire Marvel, showing up uninvited to a meeting of creditors to make their pitch.  After a lengthy legal fight, ToyBiz was awarded the business in 1998. 

The future of Marvel was now in the hands of a toy company.

Desperate for cash, Perlmutter soon cut a deal for Spiderman with Sony (who already owned a sliver of the rights, from an earlier tractions).  Marvel received $10 million plus 5% of the profits – in addition to whatever they made from any Spiderman-related toys.  The movie, which came out in 2002, did fairly well, achieving a box office of more than $100 million.  When Perlmutter saw this, he was furious, and decided he gave away too much to Sony in this transaction. 

In 2003, a savvy young business whiz named David Maisel met with Perlmutter and floated what was a radical idea at the time: perhaps Marvel could make its own movies, rather than just license the rights to others.  By controlling the production, Maisel said, they could better coordinate the timely development and sale of movie-related toys, which was always what Perlmutter saw as the key source of revenue. 

Maisel eventually persuaded Merrill Lynch to provide $525 million, enough to make two movies; as collateral for this, Marvel offered up movie rights to a broad portfolio of their characters.  After conducting focus groups with children, Marvel decided that the most popular toy would be one based on Iron Man, and so this was nominated to be the movie they filmed first.

Overseeing this project would be a Marvel fanatic named Kevin Feige, who was hired by Arad in 2000 after seeing Feige’s contribution to an X-Men movie that was made in the late ‘90s and released in 2000, produced by Lauren Shuler-Donner, for whom Feige was working as an assistant at the time. 

Feige and Maisel, in turn, both selected Jon Favreau to direct Iron Man. This was critical to the movie’s eventual success, not least because Favreau identified Robert Downey Jr as the ideal actor to portray Tony Stark, and then passionately advocated for him despite Perlmutter’s strenuous objections (Downey was considered a risky choice because of his well-known history of substance abuse). 

Favreau eventually won, Downey joined the cast, and other talented actors and crew members were soon drawn by Downey’s presence.  Downey turned out to be perfect for the role, the movie was an enormous success, and the franchise was launched, steered by Feige’s vision for an integrated series of films all taking place in a coherent universe – the MCU.

Jon Favreau

Interestingly, Favreau got the opportunity to direct Iron Man in part because of his success directing the 2003 Christmas classic Elf, starring Will Ferrell. Favreau had heard about Elf in 2001 when he was guest directing an episode of a TV show called Undeclared, created by Judd Apatow, who shared a manager with Ferrell.  The TV show opportunity, in turn, resulted from the success of his 1996 cult classic, Swingers – a film that he wrote in less than two weeks after his dad sent him screenwriter software and for amusement, he thought he’d try it out. 

Favreau barely managed to get Swingers financed (ultimately a friend of the director’s father ponied up $200,000). He struggled to film the picture on this tiny budget, relying on friends, spare supplies, and unpermitted locations often requiring guerilla filming tactics to complete a take rapidly before he was kicked out.

In short: the MCU was launched from the success of Iron Man, driven largely by the appeal of Robert Downey Jr, who was cast only because director Jon Favreau had insisted, and Favreau was in the director’s chair only because of a remarkable series of fortunate events. 

Contingent but not Random

While the successful development of blockbuster movies and medicines clearly requires a huge number of unplanned and perhaps unplannable things to go right, their successes, critically, are not random either. 

Luck may be necessary, but it’s hardly sufficient.

The launch of the MCU, for example, clearly involved an exceptional amount of luck but it also required extremely talented people, in this case a balance sheet-focused business executive, Ike Perlmutter, joined by the creative Avi Arad; a visionary finance strategist, David Maisel; an imaginative, ultra-high-EQ subject matter expert, Kevin Feige; and a director with great taste and an expansive network, Jon Favreau. 

It would be a mistake to attribute the coalescence of this team to dumb luck.  Feige, for example, had attended film school at USC after applying six times (he was rejected the first five), and then pursued an internship with the Hollywood power couple of Laura Schuler-Donner and Richard Donner (Richard had directed the 1978 film Superman, starring Christopher Reeve). 

Maisel, drawn to the entertainment business, had apprenticed with legendary superagent Michael Ovitz after first attending Harvard Business School and spending time at the Boston Consulting Group.  Favreau, meanwhile, had spent years hustling in Chicago and Los Angeles as an aspiring actor and director; bit parts include “D-Bob” in Rudy (1993), and “Eric the Clown” on an episode in the fifth season of Seinfeld (1994).

In Outliers (my WSJ review here), Malcolm Gladwell discusses underappreciated factors that can contribute to success, such as hours of practice and hard work.  As I noted, “For the Beatles, the hard work of marathon engagements in Hamburg’s red-light district early in their careers was crucial. ‘By the time they had their first burst of success in 1964,’Mr. Gladwell writes, ‘they had performed live an estimated twelve hundred times. Do you know how extraordinary that is? Most bands today don’t perform twelve hundred times in their entire careers.’”  Similarly, Bruce Springsteen, in his captivating autobiography, cites his years of experience in a bar band as critical for his later success. 

Seth Stephens-Davidowitz, in Don’t Trust Your Gut (see my discussion here), also examines how artists can increase their exposure to serendipity by getting themselves out there rather than waiting to be discovered.  Maisel, Feige, and Favreau, in evolving their careers, all seem to have chosen, deliberately, to put themselves in the path of serendipity, maximizing their chance to get lucky.  Maisel worked with Ovitz, Feige went to USC film school and then worked with Schuler-Donner, and Favreau keeping himself in the mix as an actor (and later director), as frustrating as that must have felt for most of his early career.

The success of Keytruda and Velcade, also, required more than just good luck.  While Merck’s head of R&D Roger Perlmutter wasn’t responsible for the Keytruda’s discovery and early development, he soon recognized the promise of the drug, and ensured Merck was all-in on its development, independent of whatever his (and Merck’s) preexisting strategic plans might have been. Similarly, the championing of Velcade by Julian Adams was essential to its development — not least his role in persuading a skeptical Millennium to resource it after the acquisition of Leukosite.   

What Is To Be Done?

On an individual level, it seems like a good idea to stay in the mix as much as possible, not least because the people you work with on a failed program today might be some of the same people you might work with on a successful drug tomorrow, and the skills and instincts you develop along the way in the trenches enable you to become increasingly effective, assuming you are curious, industrious, and collegial.

On a company level, it’s more complicated. Most large pharmas are built around a degree of planning and projection that works beautifully in Excel and Powerpoint.  However, the approach generally doesn’t meaningfully acknowledge, much less come close to describing, the messy reality of novel product development. 

This discrepancy suggests there must be an incredible arbitrage opportunity here for more agile leaders and nimbler organizations, and presumably this is what venture-backed biotech start-ups are effectively doing. It’s not surprising to learn that only a quarter of new approvals in big pharma originated in-house, and unless big pharma can truly figure out how to industrialize and brute-force innovation, I’d be surprised to see big pharma’s in-house number go anywhere but down.

Stay Humble

It seems only appropriate to conclude a piece around uncertainty with several humbling reminders.

As Judah Folkman, a pioneering surgeon-scientist and a great champion of innovation at Harvard famously observed, “If your idea succeeds, everybody says you’re persistent. If it doesn’t, you’re obstinate.”  

In other words: to pursue any idea, at some point, you have to just put your head down and go after it; the problem is you have no way of knowing until afterwards whether you were right.

This lesson has particularly poignancy in the case of Folkman, who is perhaps best known for advancing the thesis that to grow beyond a certain size, cancers need to acquire their own blood supply, and if you can inhibit the grow of new blood vessels – for example, with drugs targeting VEGF — you might be able to starve and kill cancers.

It now seems, as Scannell points out in his interview, that these anti-VEGF cancer medicines, like Avastin, might work in other ways. As MGH cancer researcher Rakesh Jain wrote in 2014, these “agents could transiently ‘normalize’ the abnormal tumor vasculature, resulting in improved blood perfusion,” and helping other anti-cancer treatments (both drugs and radiation) work better. 

Thus, the medicines Folkman was championing might work, but perhaps not for the reasons he thought.

Ed Catmull

We might give the last word to former Pixar CEO Ed Catmull, who wrote an entire book, Creativity, Inc., about the challenges of serial creativity, and the need to successively reinvent yourself each time (see my discussion here). 

While readers “often thanked him for sharing his formula for surefire creative success,” the Wall Street Journal reported in 2023, the book conspicuously makes the opposite point: there isn’t “a template” for success – at best, he allows, there is perhaps “a way of thinking.”

Catmull’s insight bears repeating: inconveniently, there just isn’t a ready formula for creative success.  Catmull was talking about original movies in particular, but he could just as easily have been discussing original books, songs, drugs, or even venture investments, which all obey power law dynamics. 

Even if you are part of a team that has delivered an outsized success, or the CEO of the organization responsible, it doesn’t mean that you can now apply what you’ve learned and simply do it again, or that your organization can now apply these tidy “lessons learned.”  

I find it liberating to recognize that there isn’t a secret formula for innovative success in pharma (or any other creative domain ruled by the power law).  It means we don’t need to distract ourselves wondering whether we are doing it “right,” or worry if we’re not following the putative example of previous successes (which would be particularly misguided given the post-hoc narrative biases Scannell describes). 

Novel, impactful medicines – like novel, impactful films – are incredibly difficult to create, and require an exceptional amount of luck. 

What we can control, however, is how we approach this challenge:  with authentic intellectual curiosity, and colleagues who are talented, inquisitive, and nimble, approaching their work with conviction yet able to pivot in response to new information. 

True, we may not succeed.  Yet as screenwriter Charlie Kaufman observed, “If you don’t risk failure, you’re never going to do anything that’s different from what you’ve already done or what somebody else has done.” 

1
May
2024

Investing in Biotech & Healthcare Delivery: Vineeta Agarwala on The Long Run

Today’s guest on The Long Run is Vineeta Agarwala.

Vineeta is a general partner with Andreesen Horowitz’s Bio & Health fund. She invests in a variety of therapeutics and diagnostics startups.

Vineeta Agarwala, general partner, A16Z Bio & Health

Gate Bioscience, Rome Therapeutics, Rezo Therapeutics, Bighat Bioscience, Function Oncology, and Orbital Therapeutics are a few examples.

She also is a physician by training, still sees patients once a week in a cancer survivorship clinic at Stanford. That is part of what gives her an unusual ability to move from the lab bench all the way to the implementation side of healthcare. Pearl Health, Memora Health, and Pomelo Care are a few of her portfolio companies on the ‘health’ side of the house.

Vineeta is a previous guest on The Long Run from December 2021. In this more recent conversation, she and I spoke on stage at the Life Science Innovation Northwest conference in Seattle on Apr. 17, 2024.

We talk here mainly about her view of recent developments with AI for drug discovery.

Before we get started:

I’m looking for a business representative. This person will be asked to sell group subscriptions to Timmerman Report, sell sponsorship packages to The Long Run podcast, and negotiate my speaking engagements. This position will pay a base salary plus commissions. The ideal candidate is someone seeking to grow their knowledge and network in the biotech industry. Interested? Email me at luke@timmermanreport.com

Now please join me and Vineeta Agarwala on The Long Run.

16
Apr
2024

New Tools & Techniques for Biology: David Liu on The Long Run

David Liu, professor, chemistry and chemical biology, Harvard University; core institute member, Broad Institute of Harvard and MIT

Today’s guest on The Long Run is David Liu.

David is a professor of chemistry and chemical biology at Harvard University, and a core institute member at the Broad Institute of Harvard and MIT. In biotech industry world, he’s a founder or co-founder of a long list of companies, including Beam Therapeutics, Prime Medicine, Editas Medicine, Chroma Medicine, and Exo Therapeutics. And that’s not the entire list.

His best-known contributions to industry include a first-generation CRISPR-Cas9 gene editing company, a CRISPR base editing company, then a prime editing company, and epigenetic editing company. But there’s a small molecule drug developer taking aim at unconventional binding sites on enzymes.

One common thread that runs through David’s career is a focus on using new tools, and developing new techniques, to advance biology. Besides the widely known advances in gene editing, he’s known for fundamental work on phage-assisted continuous evolution and DNA‐Templated Organic Synthesis that set the stage for his later work. Going back and reading some of those early papers sheds some light on what and why he did the things that came later.

In this conversation, I asked David to talk about his early life and influences that maybe aren’t so widely known among collaborators in academia and industry. We spent a good bit of time on that, before getting into more recent advances with base editing and prime editing.

This conversation was recorded Apr. 2 in his office at the Broad Institute.

Before we get started, I have a couple of announcements to make:

One, I’m pleased to announce two new Timmerman Traverse campaigns in 2024. One is for Life Science Cares with a focus on fighting poverty around the US. The next one is for Sickle Forward, a nonprofit devoted to improving newborn screening and treatment of sickle cell disease in Africa. Both campaigns are loaded with biotech leaders working to raise $1 million. For more information about who’s on the team and how to contribute, go to TimmermanReport.com and click on “Traverse.”

Second, I have a job opening. I’m looking for a business representative. This person will be asked to sell group subscriptions to Timmerman Report, sell sponsorship packages to The Long Run podcast, and negotiate my speaking engagements. This position will pay a base salary plus commissions. The ideal candidate is someone seeking to grow their knowledge and network in the biotech industry. Interested? luke@timmermanreport.com

Now please join me and David Liu on The Long Run.

10
Apr
2024

Meet the Timmerman Traverse for Sickle Forward Team

I’m thrilled to announce a new initiative to raise $1 million to fight sickle cell disease. It’s the Timmerman Traverse for Sickle Forward.

A team of 21 biotech leaders are banding together for Sickle Forward in 2024. It’s a nonprofit dedicated to improving newborn screening and treatment of sickle cell disease in Africa.

Ted Love, chairman of the board, BIO

When we hit that goal, we will secure another $1 million match to advance sickle cell disease research in the US. This makes it a global effort.

In September, we’ll gather to climb Kilimanjaro, the highest peak in Africa at 19,341 feet.

We’ll accomplish a few things along the way.

We will raise awareness of this long-neglected disease and treatments that offer new hope.

Alan Anderson, physician-scientist; executive director, Sickle Forward

We will give back to those less fortunate.

We will relish the beauty of Kilimanjaro and the Tanzanian people.

We will form deep, lasting friendships.

Who’s on the Team?

  • Luke Timmerman, founder and editor, Timmerman Report (co-chair)
  • Ted Love, chairman of the board, BIO (co-chair)
  • Alan Anderson, physician-scientist, University of South Carolina; director of the Comprehensive SCD Program of Prisma Health-Upstate; executive director, Sickle Forward (co-chair)
  • Patrick Hines, founder and CEO, Functional Fluidics
  • Terry-Ann “TA” Burrell, chief financial officer, Beam Therapeutics
  • Asha Collins, senior vice president, general manager, Biobanks Data Analysis Platform, DNAnexus
  • Alexander Gruzdev, vice president of sales and marketing, Silver Lake Research Company
  • Elena Gruzdev, representative, Silver Lake Research Company
  • Alex Harding, head of business development, CRISPR Therapeutics
  • Sam Blackman, founder, head of R&D, Day One Biopharmaceuticals
  • Davy Chiodin, chief development officer, Day One Biopharmaceuticals
  • Matt Donne, director, business operations, Renasant Bio
  • Geraldine Ezeka, senior associate, Persephoni BioPartners
  • Jimi Olaghere, founder, VP of commerce, Resurgence (one of the first people cured of sickle cell disease with CRISPR-Cas9 gene editing)
  • Maurice Garland, head of sales, Ferring Pharmaceuticals
  • Stephen Scully, co-founder, interim chief technology officer, Liberate Bio
  • Ilyas Said, patient advocate and board member, Sickle Cell Disease Patient Community of Tanzania
  • Alain Romero, consultant, independent
  • Jingyi Liu, clinical fellow, Brigham & Women’s Hospital
  • John Mennel, managing director, Monitor Deloitte
  • Doug McConnell, co-founder and CEO, Safi Biotherapeutics
  • Sarah Alspach, senior vice president, external affairs, bluebird bio

Who’s Sponsoring?

  • Silver Lake Research Company
  • bluebird bio
  • Vertex Pharmaceuticals
  • Agios Pharmaceuticals

How can I help?

I’m excited about this campaign in terms of the breadth and depth of the impact it will have for people with sickle cell disease.

As Alan Anderson, executive director of Sickle Forward, puts it:

“Sickle Forward firmly believes in ensuring that every child, irrespective of their birthplace, has access to timely diagnosis and appropriate treatment for sickle cell disease. Through a combination of grant and private foundation support, Sickle Forward recently launched a bold initiative to screen 100,000 infants for sickle cell disease in Mali and Togo. This comprehensive approach, coupled with access to routine treatment, holds the potential to save lives. The funds raised through the Timmerman Traverse for Sickle Forward will facilitate a significant expansion of the screening and treatment programs across Africa, furthering our mission to make a meaningful difference in the lives of those affected by sickle cell disease.”

This expedition has potential to save many lives in the short-term, and even more by advancing research over the long-term.

Thank you for your support.

8
Apr
2024

Meet the Timmerman Traverse for Life Science Cares 2024 Team

Luke Timmerman, founder & editor, Timmerman Report

The Timmerman Traverse for Life Science Cares is back for a $1 million mission to fight poverty in 2024.

This year’s team is coming together in common cause. We will bond together on a pair of spectacular hikes in the Pacific Northwest.

We will cover 20 miles of trails, with more than 7,000 feet of elevation gain, over two days in the North Cascades.

Legs will be tired.

Foreheads will be sweaty.

Shoulders may be achy.

We’ll enjoy fellowship amid some of the most spectacular scenery in North America.

Aug. 19: Hidden Lake Lookout

Aug. 20: Cascade Pass / Sahale Arm

Who’s on the Team?

Who’s Guiding?

Who’s Sponsoring?

  • Third Rock Ventures

How can I help LSC fight poverty?

Since 2021, the Timmerman Traverse has raised $3 million to break the cycle of poverty and open doors to opportunity.

These trips have catalyzed a national expansion of the Project Onramp program. The plan is to bring 1,000 interns from underrepresented minorities into biotech job opportunities by 2027.

These expeditions are a force for good. We’re just getting warmed up.

Watch this team!

 

“We started as industry colleagues with an aligned philanthropic goal. We finished as friends, deeply connected through an experience none of us will ever forget and all of us will work to rekindle in our lives.” — Reid Huber, partner, Third Rock Ventures

4
Apr
2024

How CymaBay Survived a Safety Scare

Dylan Neel, MD/PhD candidate at Harvard Medical School

In November 2019, Sujal Shah was the CEO of a public company with two promising late-stage clinical trials underway. The company was worth more than $900 million. 

A couple months later, he found himself cornered in a parking lot by an activist investor—one of a handful pressuring him to shut down and liquidate his company CymaBay Therapeutics.

“I can smile about it now, but it was easily one of the most difficult times of my professional life,” says Shah, CEO of CymaBay (now a wholly-owned subsidiary of Gilead Sciences).

At the time, CymaBay was running the key clinical trials to determine the safety and efficacy of its PPAR-delta agonist, seladelpar, for two liver conditions: primary biliary cirrhosis (PBC) and metabolic dysfunction-associated steatohepatitis (MASH). When the clinicians scoring the end of treatment MASH trial results reported worrisome pathologic findings, Shah knew it could mean the end of seladelpar and CymaBay.

Sujal Shah, CEO, CymaBay Therapeutics (now part of Gilead Sciences)

“We had a moral decision to make at that point in time—wait for more data to be analyzed or immediately halt the trial. We decided to immediately stop the study…after all we had no way simple way to determine whether or not the pathology findings were definitively due to seladelpar or not.”

The consequences were swift and severe. CymaBay had to lay off two-thrids of its employees. The stock fell by 76 percent in a day. Most experts told Shah to abandon seladelpar and move on—an investigation would be difficult and take far too long.

“I couldn’t sleep, and would lay awake at night thinking: none of this made any sense? I had to at least try to figure out what happened.”

Shah and his team at CymaBay stuck to their convictions and launched an investigation into the results—an investigation that four months later would totally exonerate seladelpar from having caused any of the atypical pathology observed.

FDA clinical holds were lifted. The trials started back up. CymaBay’s shares regained their value and more. In March 2024, Gilead acquired CymaBay and seladelpar for $4.3 billion in total equity value. Most importantly, there is a promising new treatment for PBC on the horizon.

“Patient stories were the biggest motivator for me during these difficult times, I learned that many of them had been doing well and feeling better than ever before on seladelpar—it was all the fuel I needed,” Shah says.

Trained as a biomedical engineer at Northwestern University, Shah originally thought he would become a physician, but instead pursued research. After earning his master’s degree in biomedical engineering, Shah eventually went to business school where he was drawn to healthcare investment banking.

“What attracted me was the ability to learn about the entire biotech industry, while also gaining a very concrete financial toolkit.” After rising through the ranks at Credit Suisse and then Citigroup, Shah began his search for an operating role in the industry in 2012. It was during this time that he first met the management team at Metabolex (renamed CymaBay after going public). A year later, he would join full-time as the company’s chief financial officer. 

In our interview, Shah discusses the creative financial mechanism by which he took CymaBay public, lessons learned from the challenging development of seladelpar and the rationale for his management decisions along the way. He shares advice with those in biotech, stressing the importance of letting data drive decision making. Shah admits that at a certain point you just need to have faith: “Ultimately, you must believe. Believe in yourself and in others.”

Read more of our conversation below.

What initially got you interested in science or medicine?

I have always had a propensity for math and science. The intersection of quantitative skills and human biology always seemed remarkable. However, my original goal was to go to medical school and become a physician.

When that path became challenging, I really didn’t know what to do next, so I applied to graduate school [master’s program] in biomedical engineering. I found a laboratory at Northwestern using biodegradable polymers as scaffolds for tissue regeneration. I really enjoyed the research, and at the end of the master’s program could have considered staying to complete a PhD. Yet at the time I made the decision to get a job and go into industry. I didn’t see myself working in a lab for the rest of my career and wanted some real-world experience.  

What was your first experience in industry like? What led you to business school and then investment banking?

In the several years after college, I didn’t have a lot of direction. I took a job at a startup company based in Pittsburgh, called Tissue Informatics. The company was a little bit too far ahead of its time. The mission was not dissimilar from what organizations like PathAI are now attempting with digitized slides and developing algorithms for diagnosis.

The company [Tissue Informatics] was growing, but when the tech bubble burst in 2000, financing dried up. Around this time, I applied to business school with the goal of changing the type of role I could get within biotech. During business school [at Carnegie Mellon] I interned at Roche with an interest in business development and had a full-time offer to work for them after graduation. I also gained exposure to healthcare investment banking and ultimately ended up taking a role with Credit Suisse First Boston when I finished my MBA.

What was your experience like in life sciences investment banking? What skills did you learn that helped you later?

As an investment banker, you gain exposure to many different areas of healthcare and within biotech, many different therapeutic areas. What attracted me to the field was the ability to learn about the industry, while also gaining a very concrete financial toolkit and exposure to capital markets. The transactional experiences in banking later proved to be vital during my 12 years at CymaBay.

The hours [in banking] were intense, but it really does drill into you discipline and a particular skillset: if you asked me to build a three-statement financial model or merger model I could probably still do it, even now! The 100-plus hour work weeks also toughen you up, which came in handy during later parts of my career at CymaBay.

I also learned that the heart of our industry is letting the science and data drive decision making. The best management teams are very honest internally and externally about what data is saying. There is no room for rose colored glasses—you have to be transparent, honest and clear-minded.

After your investment banking career, what led you to start working with Metabolex—the company that later became CymaBay?

After leaving investment banking, I was working as a consultant with several companies and a biotech venture capital firm. I was using this time to look for an opportunity to become Chief Financial Officer of a biotech company.

Eventually I met the team at Metabolex. The team needed financing (about $30 million) to keep the venture going and run another clinical study for an asset being developed for chronic gout. To be honest, raising this amount seemed like an insurmountable task given existing investors were reluctant to put any additional capital in the company without a new lead investor. In fact, I did not join the company initially because it was in such a tough financial position. Over the course of the following year, I helped them raise the money though as a consultant. By the time we pulled off this financing, I was so emotionally invested that I decided to join full time as CFO in 2013.

[What was the financing that you were able to pull off as a consultant and then CFO?]

After a year of trying and failing to find new investors, Metabolex had about three months’ worth of cash left by mid 2013. The board had pretty much resigned itself to bankruptcy. I remember sitting in my car and coming up with an idea. When I was working at Citi as an investment banker, there was a research analyst who left to join a company called Coronado Biosciences. At Coronado, they were able to raise about $20 million from retail investors—basically high net worth individuals where the average investment would typically be between $50,000 to $100,000 per person.

To pull this off, they used a group in New York called National Securities, which has a network of independent brokers. I decided to go to NYC with our CEO at the time to meet with some of these broker firms on behalf of Metabolex to try to raise $30M in funding. After hearing our story, National Securities felt they could raise us $15M. But first, we had to raise the other half from “smart money” biotech institutional investors. As part of this recapitalization, I also had to get J&J’s venture capital arm, JJDC, to forgive $16 million in a convertible note Metabolex owed them in exchange for $3 million of equity credit in the surviving company if we were somehow able to pull off the $30 million financing. JJDC agreed and we were subsequently able to raise $15M from existing investors and venture debt.

Once this happened, we told National Securities “Go!”, and they raised about $17 million within three weeks. The deal turned out to be a about $32M financing with a $52M post-money valuation—so the existing investors were heavily diluted. However the company survived, and we were eventually able to go public. The way in which we went public was quite unconventional—a self-registration form 10—but that is a story for another time.

What was the company’s early focus and what series of events led to the focus on primary biliary cirrhosis?

Before I joined the company, Metabolex had licensed the rights to a second-generation insulin sensitizer to J&J (Janssen). As part of that out-licensing, Janssen offered upfront cash, future milestones and royalties and a clinical asset in return.

Seladelpar, which is the drug that became the future of CymaBay, came from this deal with J&J.

Seladelpar is a selective and potent PPAR delta agonist. Well-known drugs like fenofibrates target the PPAR alpha isoform, which has an established role in LDL and triglyceride biology. Metabolex was originally interested in understanding if PPAR delta agonists could also be used for mixed dyslipidemia—liver disease was not even in the conversation at this point [early 2000s].

In addition to lowering total cholesterol, LDL-cholesterol and triglycerides in patients with mixed dyslipidemia, seladelpar reduced alkaline phosphatase [ALP]. Although these patients did not have ALP above the upper limits of normal, elevated ALP produced in the liver is associated with impaired bile flow [cholestasis] in patients with primary biliary cholangitis [PBC].

Our CMO at that time recognized that ALP was being used as a surrogate endpoint for potential accelerated approval in PBC and we moved forward with a phase 2 study in this indication. The anti-cholestatic and anti-inflammatory elements of seladelpar’s mechanism of action gave us hints that the drug could perhaps be useful in treating liver diseases like primary biliary cholangitis, where ALP was part of an FDA-approved surrogate endpoint.

We decided to shift our development of seladelpar from dyslipidemia to PBC. In the PBC phase 2 trials we saw striking results: clear ALP and bilirubin reductions as well as reductions in pruritus [itching], a menacing clinical symptom of PBC. This data compelled us to pursue liver disease, where there were clearer regulatory paths. Around this time [2017] I was also asked by the board to move from the CFO to the CEO role at CymaBay.

Walk us through what happened when CymaBay got a clinical hold for seladelpar in its MASH trial.

Between 2016-2017 we started generating some interesting Phase 2 data in PBC. We began enrolling patients in a Phase 3 trial of seladelpar for PBC in December 2018. At this point, we were a $500M market cap public company.

Based on our knowledge of seladelpar’s mechanism, we also decided to run a phase 2b study of seladelpar in MASH. In this study we examined measures of liver fat as a primary endpoint, but also took liver biopsies to assess NAFLD activity score [NAS] and fibrosis. Fundamentally PPAR delta drives fatty acid oxidation, in addition to its effects on reducing bile acid synthesis, inflammation and fibrosis.

We believed that treatment would lower liver fat; so, we powered the trial to detect decreases in liver fat. At the 12-week readout, it appeared that the drug did not lower liver fat significantly compared to placebo. This was a surprise to us, and the stock took a 30% hit.  However, our phase 3 trials in PBC were still progressing according to schedule, and we thought that we may see an impact on NAS and fibrosis at the 52-week MASH trial readout.

In November 2019, our two pathologists scoring the MASH 52-week biopsies gave us an alarming call. They told us that they were seeing a significant number of patients with interface hepatitis or periportal inflammation—features that were not previously reported in MASH. It appeared that these pathologic features, which were present in almost 30% of the end of treatment biopsies scored, could have be associated with drug treatment.

Over the course of a weekend, we consulted with a number of hepatologists and MASH experts—nobody knew what to make of these findings. Was it possible that the drug was causing injury? Despite the biopsy findings, we were seeing reductions in liver injury markers and bilirubin levels in trial participants. As our hepatologists pointed out, the patients had no laboratory or clinical features of liver damage. The pathology findings did not match the overall clinical picture for these patients but we had no way to prove or disprove whether or not these findings were being caused by seladelpar.

We had a moral decision to make at that point in time—wait for more data to be analyzed or immediately halt the trial. We decided to immediately stop the study and call the FDA. On one hand this was one of the most difficult decisions to make as I knew it would likely mean the end of seladelpar and also the end of CymaBay. On the other hand it was an easy decision because I was never going to put patient safety at risk.

What happened?

Seladelpar was put on a formal clinical hold. Prior to this point, CymaBay was a $900M market cap company. The Street reacted to the news: our stock tanked to $1 a share, or a $100 million in market cap even though we had $2 a share or $200 million of cash on the balance sheet. We had to lay off two thirds of the company right before Christmas of 2019.

It was one of the worst times in my life. I felt that I had poured my soul into the company: it was all gone in a flash. I couldn’t sleep, and would lay awake at night thinking: “none of this made any sense?” I had to at least try to figure out what happened.

Given CymaBay had $200M of cash and only a $100M market cap, an activist investor bought 10% of the company—he wanted to pressure us to liquidate and thus make a quick return. He wrote a public letter calling for dissolution of the company and accusing me and the Board of not acting in the best interests of investors. I knew that we had to run an investigation to figure out what happened while we also considered strategic alternatives including liquidation as required by our fiduciary duties. Many experts told us it would take years to complete a proper investigation and that it would be impossible to ever learn anything definitive.

Despite the challenge of having to prove a negative, we launched an investigation into understanding the findings and whether or not seladelpar caused them. We assembled what I would call the “dream team” of hepatologists and hepatopathologists with significant experience in drug-induced liver injury [DILI]. We were conducting this investigation in the backdrop of a COVID pandemic and a group of activist investors trying to shut us down.

At this point, there were half a dozen investors calling me daily with accusations and threats. One [activist] even approached me in a parking lot when I was on my way to a meeting. I can smile about it now, but it was easily the most difficult time of my professional life.

A month before our annual shareholder meeting where the lead activist was positioning to get his slate of Board nominees to take over, we finished the investigation.

Here is what we found: every single one of the patients with what the study pathologists deemed was “atypical” pathology in NASH [including interface hepatitis] at the end of study biopsy readings had the same pathology in their baseline biopsies before they were dosed with seladelpar. The biopsy findings were totally independent of treatment. Subsequent retrospective analyses from other trials and patients have shown that between 25-30% of complex MASH patients can display this type of pathology—periportal inflammation or interface hepatitis—at baseline.

We shared these findings publicly and the stock tripled. A couple months later the FDA released all clinical holds. We had to enroll a brand new PBC phase 3 trial and raise another $150M. However, it was worth it: we had dozens of PBC patients come to us when we were on clinical hold saying: “I have never felt better than when I was on seladelpar, please don’t give up.” This was the biggest motivator for me during these difficult times—it was all the fuel I needed.

What are some important lessons learned during the difficult times at CymaBay?

There are many lessons I learned in my time at CymaBay: let the data drive your decision making, hold patients and unmet need as your guiding light, and do not be afraid to disagree with the “experts” if you have conviction.

When the clinical hold on seladelpar was released, the activist investor who was pressuring me to liquidate CymaBay gave me a call.

He effectively said: “Sujal I have got to hand it to you. You stuck to your convictions and you and your team are the right people to lead the company.” During the investigation period, I answered every call from every activist investor. The minute you stop answering, you add fuel to the fire. In my role as CEO it was my duty to take these calls, treat everyone with respect (no matter how challenging) and stick to our internal convictions and plan

Dylan Neel is a final-year MD/PhD candidate at Harvard Medical School. He earned his PhD in Immunology, where he studied innate immune mechanisms in neurodegenerative disease. During graduate school he worked part-time at Vida Ventures and is the Editor of the Biomarker Substack. He graduated summa cum laude from Harvard College, with a degree in neuroscience.

1
Apr
2024

Can Bayer CEO Liberate Pharma From Stultifying Bureaucracy?

David Shaywitz

Pharma colleagues: does this complaint sound familiar?

This company is too bloated. It’s too slow. We have all these layers and layers of bosses where leaders at the top would decide on the strategy, and then it would just trickle down to the people who actually did a lot of the day-to-day work…. I am 10 layers below the CEO and I have ideas for how this company could be better, but they’ll never be heard because there are just so many people above me who are making those decisions.

According to Wall Street Journal reporter Chip Cutter, it’s exactly what newly installed Bayer CEO Bill Anderson heard when he joined the company last June and embarked on a listening tour.

A seasoned pharma veteran who was previously CEO of Genentech and then CEO of Roche Pharmaceuticals, Anderson had become “disillusioned over the years by the many approvals and endless rounds of meetings required to get anything done at large companies,” Cutter reports.

Bill Anderson, CEO, Bayer AG

Anderson heard the same gripes at Bayer.  He was told that “launching a new product takes years instead of months,” Cutter writes.  “Disputes between departments take too long to resolve. He learned that company rules and procedures fill 1,362 pages, he said, ‘longer than War and Peace, and a lot less exciting.’”

At the same time, Cutter also points out that “Modern corporate hierarchies have persevered because they largely work and attempts to subvert them haven’t.”

Nevertheless, Anderson is trying to “rewire” the company culture, focusing on “fewer bosses, fewer rules.”  The plan – built around a principle Anderson calls “dynamic shared ownership” — involves self-assembling groups of employees deciding on priorities, and working together to accomplish projects for 90 days, and then repeating the self-assortment process. 

The idea, as “The Journal” podcast co-host Ryan Knutson explains, is “to empower employees to make big decisions without having to get the approval of layers and layers of management.”

To guide the process along are leaders/advisors, in roles called “’visionaries,’ ‘architects,’ ‘catalysts’ and ‘coaches,’ positions focused on longer-term strategy and guidance-giving,” according to Cutter.

It’s a radical departure from the usual way of conducting business in large companies, Anderson recognizes.  “The first go round, it’ll be a little messy,” Anderson says, “but that’s okay because the thing is, the thing we’re comparing to is a system that doesn’t work very well. So this is the thing. We don’t actually have to be that good to beat the current system.”

Cutter describes an example of the new way of working, focusing on a self-assembled team focused on expediting the launch of a new line of vitamins.

The team didn’t spend time creating a polished PowerPoint presentation to show company higher-ups. Executives were instead periodically invited to the Garage [a dedicated innovation area] to look at designs and ideas on the walls and offer any suggestions.

Typically, the timeline for a product launch takes into account the multiple layers of approval needed for each stage of the rollout. If eight people gather from different departments, each of them would spend much of their time getting their individual bosses to sign off on an idea.

“They’ve got to convince eight people,” Anderson said. “And when one or two of them says, ‘No, no, actually, I like this better,’ then the other six have to go back and convince their managers about the new plans.”

Not any more, Anderson said, gesturing with cupped hands and making the sound of an explosion. 

The team “hit its mark,” Cutter writes.  “Bayer’s new line of One a Day vitamins, packaged in a palette of pink and purples, went on sale in March, a year ahead of schedule.”

As Cutter observes, “Anybody who has gotten an early taste of this, a lot of former CEOs, management thinkers, and others, they are all captivated by what happens here because Bayer is touching on problems that are so familiar throughout corporate America and so if this works, it could be dramatic.”

The Challenges of Scale, The Drive For Control

Whether or not Anderson’s solution sticks, he is unquestionably getting at a real problem in large corporations: the tendency of entrenched bureaucracies to inhibit agility and dampen innovation (or, to put a somewhat finer point on it: to crush the souls and extinguish the spirit of often highly innovative employees drawn to industry by the desire to have an impact and make a difference).

This challenge also is highlighted in my favorite management book: former Pixar CEO Ed Catmull’s Creativity Inc., as I’ve discussed here.  (An expanded edition was recently released, as Catmull discussed with the WSJ here.)

Ed Catmull

As Catmull sees it, “full creative engagement” requires us to “uncouple fear and failure – to create an environment in which making mistakes doesn’t strike terror into your employees’ hearts.” 

This sounds great as a mantra, Catmull acknowledges, but in practice, managers also are typically told “the success of our enterprise depends on your group doing its job on time and on budget.”

Consequently, he says, if managers “have to choose between meeting a deadline and some less well-defined mandate to ‘nurture’ their people, they will pick the deadline every time.”

Managers, Catmull explains, “typically want two things: (1) for everything to be tightly controlled, and (2) to appear to be in control.”

And now we get to the crux of the issue:

But when control is the goal, it can negatively affect other parts of your culture.  I’ve known many managers who hate to be surprised in meetings, for example, by which I mean they make it clear they want to be briefed about any unexpected news in advance and in private.  In many workplaces, it is a sign of disrespect if someone surprises a manager with new information in front of other people.  But what does this mean in practice?  It means there are pre-meetings before meetings, and the meetings begin to take on a pro forma tone.  It means wasted time.  It means employees who work with these people walk on eggshells.  It means that fear runs rampant.

I suspect most pharma veterans will recognize these behaviors.  (See also Safi Bahcall’s Loonshots – my WSJ review here, and additional biopharma discussion here.)

The question is whether these patterns of behaviors are inextricably tied to the smooth functioning of massive sprawling corporations, with their need for alignment, their reliance on hierarchy, and their instinctive prioritization of tight control to drive consistency, efficiency, repeatability, and standardization? 

One alternative, presumably, might be a more trust-based cultivation of originality and creativity that Catmull champions. 

There are other challenges related to company size: in a smaller organization, the relationship between your individual contribution and the mission and success of the company is much easier to discern, and often immediately palpable.  But in massive, incredibly complex companies, most of the time, your sphere of control can feel far removed and often detached from the overall trajectory of the company as a whole.  Hence the tendency to keep your head down and focus exclusively on your specific deliverables, which you rely on to maintain your bearing.

These stark contrast between the cultures of small and giant companies was recently highlighted by startup CEO Noam Bardin (see here), whose company, Waze, acquired and absorbed by Google.   

“What seems natural at a corporation,” Bardin said to WSJ reporter Christopher Mims, “multiple approvers and meetings for each decision—is completely alien in the startup environment: make quick decisions, change them quickly if you are wrong.”

Bardin also described to Mims the differences in incentives he noticed before and after the acquisition.  “Before the sale,” Mims reports, “everyone’s financial interest was aligned with the performance of the company’s products. Once Waze was a subsidiary, getting ahead was all about getting promoted.”

Adding to the challenge, employees in large companies typically operate in the disorienting miasma of corporate buzzwords and platitudes, constantly repeated. 

Terms like “innovation” tend to be invoked so often, and applied to the most pedestrian activities, that they quickly lose all meaning in what can feel like a “Successories”-inspired world.   Minor accomplishments, particularly those in line with high profile management initiatives, receive outsized recognition, and highly burnished “success stories” are celebrated and socialized. 

One result of all this is a remarkably hermetic environment within large companies, sort of an alternative, self-consistent universe with its own rules and customs, sustained in large measure by the established structures and defined hierarchy.  Truth is what your manager, and his or her manager, says it is, and you challenge these orthodoxies at your peril.

Speculation

First, I’d argue that big companies lean into process and control because it feels more reliable and scalable than creativity.  Indeed, Catmull’s core thesis, as he tells WSJ reporter Emily Bobrow, is precisely that there is not a “formula” for success, and you need to reinvent yourself creatively each time. 

As I’ve frequently noted, this is the exact antithesis of what anyone in large pharma companies wants to hear or is prepared to hear.  Instead, pharmas characteristically overindex on perceived “success factors,” and may doom future projects by applying with excessive rigor the putative lessons learned from previous blockbusters.

Second, big pharmas will continue to search for tools (including potentially AI) that essentially enable them to leverage their size and process, and industrialize innovation. This basically means they seek to use brute force to produce superior medicines.  So far, based on the high fraction of pharma products born elsewhere, this hasn’t proved especially successful, but the hope is always there.

Third, since I don’t think the cultures of most big pharmas are likely to change meaningfully, I anticipate we will continue to see the pharma version of “the big sort,” the demographic self-assortment that leads to the geographical clustering of like-minded people (e.g. progressives moving to blue states and conservatives moving to red states).  Drug developers who find comfort in process, control, caution, and stability will migrate to and remain in large pharmas, while those who prefer living a bit out over their skis will choose smaller biotechs – provided market conditions enable early-stage companies adequate opportunity to find their footing.  

Most of the top creative physician and scientists I know in drug development are now working in small biotechs – often after previous roles in large pharmas. We have seen a long-term trend of talent migration from large pharma to startups – see Luke’s column from September 2017 on “How’s It Going for Big Pharma Vets at Startups?

Fourth, remember that while smaller biotechs may be more innovative (or at least embrace more risk), most drug development efforts fail; even with the most creative people in the most supportive environment, science is incredibly, unfathomably, brutally unforgiving.  The single biggest advantage big pharmas have (see here) are the resources to remain in the game long enough to absorb the many inevitable failures – and then run with the very rare success, whenever it arrives.  

Even the most innovative small biotechs struggle to remain independent, and are generally acquired by big pharmas; Genentech, memorably, was fully acquired by Roche in 2009. 

Pixar, incidentally, was no different.  As Pixar Chair and majority shareholder Steve Jobs told Catmull when Jobs was contemplating a sale to Disney, “Pixar is a yacht.  But a merger will put us on a giant ocean liner, where big waves and poor weather won’t affect us as much.  We’ll be protected.” 

The challenge, of course – for Genentech, Pixar, Waze and others — is sustaining their distinct creative culture in the context of the larger corporation. 

Not surprisingly, as Bruce Booth of Atlas Ventures has described, a lot of top R&D talent tends to recycle into the startup ecosystem after an acquisition.  Given the challenges of maintaining (much less retroactively establishing) a culture within large pharmaceutical companies that truly supports creativity, let’s hope market conditions sustain and foster the virtuous cycle Booth describes, as this may most effectively enable the continued, essential cultivation of genuine innovation in the life sciences.

6
Mar
2024

Early Detection, and Treatment, for Alzheimer’s: Valerie Daggett on The Long Run

Today’s guest on The Long Run is Valerie Daggett.

Valerie is the founder and CEO of Seattle-based AltPep.

Valerie Daggett, founder and CEO, AltPep

This company is working on an unusual diagnostic-and-therapeutic strategy against Alzheimer’s disease.

I wrote about the company in June 2023 when it raised $53 million in a Series B financing that included Section32, Alexandria Real Estate Equities, and Eli Lilly among others.

At the time, I wrote:

What if you could screen everyone at age 40, with a simple blood test, that could detect trace amounts of the toxic forms of amyloid-beta protein that build up over 10-20 years in people with Alzheimer’s?

What if the blood test had 99 percent sensitivity and specificity to the toxic forms of the protein structure, ignoring normal forms? What if you could go a step further after a positive early diagnosis, and give a treatment that binds the same way, but is optimized to clear out those misfolded proteins before they start bunching up into plaques that damage neurons to the point of no return?

This might sound like daydreaming in Alzheimer’s diagnosis and treatment, but Seattle-based AltPep is imagining such things and has secured $53 million in Series B financing to pursue its plan.

Valerie is a professor of bioengineering at the University of Washington. She has been on the faculty there for 30 years.

Her academic research has been building, and building over time, pointing toward this moment in which her team can make peptides that are so exquisitely able to distinguish toxic forms of amyloid-beta protein from the garden variety. They can also capture and remove those proteins.

In this conversation, Valerie describes how her research evolved in this direction, and why she decided to continue working on it in the business world to see if can fulfill its potential for diagnostic and therapeutic purposes.

Now please join me and Valerie Daggett on The Long Run.

1 2 3 71